

ParallelPARC: A Scalable Pipeline for Generating Natural-Language Analogies

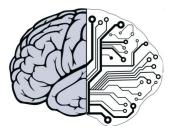
Oren Sultan

Yonatan Bitton

Ron Yosef

Prof. Dafna Shahaf

Analogies in Human Cognition



- The analogous reasoning process is one of the pinnacles of human cognition.
- It allows us to abstract information, form flexible concepts and solve problems based on prior experience (*Minsky*, 1988; *Hofstadter and Sander*, 2013; *Holyoak*, 1984)
- These essential abilities are still lacking in current AI systems (*Mitchell*, 2021)

Analogies in Human Cognition

• Analogies play an important role across many areas.

A cork is *stuck* inside an empty wine bottle.

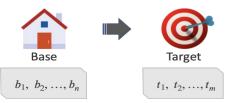
A Baby is *stuck* inside the birth canal.

Existing Analogy Resources

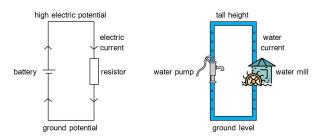
- Surprisingly, despite the importance of analogies, few analogy resources exist today.
- We believe this **lack of data** hinders progress in computational analogy.
- Most resources mainly focus on **word-analogies** (e.g., man:king is like woman:queen) (Jurgens et al., 2012; Popov et al., 2017; Kmiecik et al., 2019; Rogers et al., 2016; Czinczoll et al., 2022).
- Sentence-level analogies. Jiayang et al. (2023) created a dataset of 24K story pairs. However, the pairs are short snippets (2 sentences, ~20 tokens).
- Full paragraph-level analogies. There are few resources, most notably stories from cognitive-psychology literature (Gentner et al., 1993; Wharton et al., 1994).
 - The stories are manually curated, thus are very small, they have a near-identical structure.
- We design a pipeline for generating more complex and realistic analogies.

The Structure Mapping Theory (SMT), (Gentner, 1983)

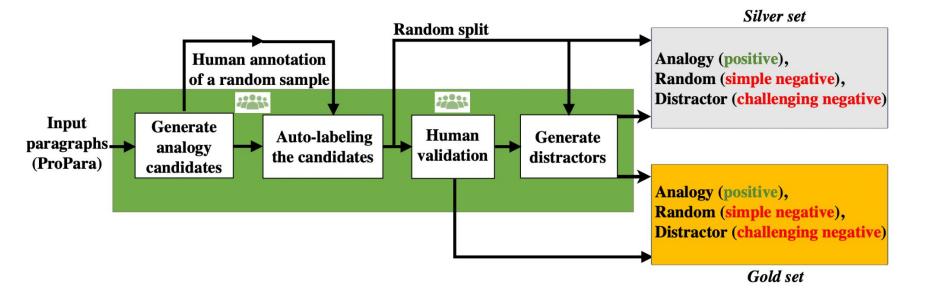
• Analogy is a mapping from entities in **base B** to entities in **target T**, relying on **relational similarity**, **not object attributes**.



• For example, in the analogy between an electrical circuit and a water pump, there is a mapping between electrons → water, wire → pipe (electrons *move through* wires like water *flows* in pipes).



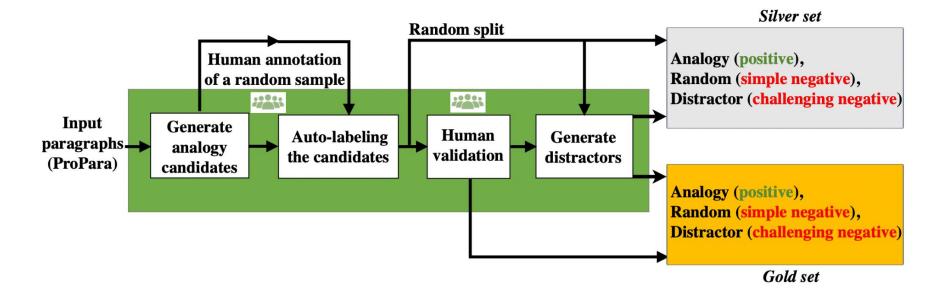
Our Work – ParallelPARC (Parallel Paragraph Creator) Pipeline



Our ProPara-Logy Generated Dataset

Base	Target	Similar Relations
Title: How does a solar panel work?	Title: How does photosynthesis occur?	(solar energy, powers, electric current)
Domain : Engineering	Domain: Natural Science	(sunlight, <i>powers</i> , chemical reactions)
Paragraph: solar energy powers an	Paragraph: Photosynthesis occurs	
electric current within a solar panel.	when sunlight powers chemical	(photovoltaic cells, convert, energy)
The photovoltaic cells within the	reactions within the chloroplasts of a	(chloroplasts, <i>tranform</i> , energy)
panel <i>convert</i> the energy from the	plant. The chloroplasts are able to	
sun into electricity. The electrical	<i>transform</i> the energy from the sunlight	(electrical wires, spread, power)
wires then spread this power	into usable energy for the plant. This	(plants, distribute, nutrients)
throughout the panel. The electric	energy is then used to produce	
current is then used to <i>power</i>	nutrients for the plant, which are then	
whatever the panel is connected to.	distributed throughout the plant.	

PART I – Dataset Generation



1) Analogy Candidates Generation

- **Goal:** to generate analogy candidates from **diverse** scientific domains.
- How? We employed GPT-3 (Brown et al., 2020) high-quality results at a very reasonable cost.
- **Problem (1)**: GPT tends to repeat itself.
- **Problem (2)**: GPT creates analogies of similar topics.
- Solution (1): Seed GPT with B instead of asking it to generate both B and T.
- Solution (2):
 - Ask for target paragraphs in specific fields (e.g., zoology) (often no analogies were found)
 - Analogies in broad target domains: Engineering, Natural, Social, and Biomedical Science.
 - Provide a balance between diversity and specificity.
 - Allowed us to control the distribution of target domains.

1) Analogy Candidates Generation

- Using a single prompt for the task X
 - Led to paragraphs that were mostly identical to the input paragraph except for nouns, and also artificially sounding sentences.
- Using two separate prompts V
 - **Prompt 1**: Finding an analogous subject, and similar relations.
 - **Prompt 2**: Generating a paragraph in natural language (given subject, and relations).
- We included **similar relations**, in addition to paragraphs, subjects, and domains.
- In total: 4,288 candidates.

2) Human Annotation Task

- We now annotate a small portion of the candidates data.
- **Goals**: to estimate the % of analogies and to use the annotated data to train models.
- We hired Amazon Mechanical Turk workers. They received two paragraphs, base B and target T, corresponding subjects, domains, and the similar relations.
- The task: to decide whether the paragraphs are analogous and the similar relations are correct.
 - **YES** (close / far) **analogy**.
 - **NO** "for further inspection"
 - **Reasons**: dissimilar relations, misinformation, cyclic vs. non-cyclic process, or other.

3) Automatic Filtering and Labeling

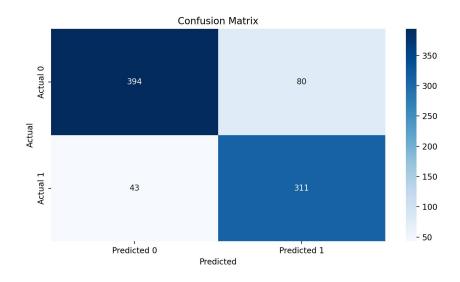
- Estimation for analogies is < 30% of the candidates data.
- We use part of our annotated data as few-shot examples for our **filtering model**.
- Goals:
 - To identify the most probable analogous candidates to show our annotators.
 - Potentially replace the human-in-the-loop and achieve a **fully automated pipeline**.
- This task is complex, and thus we use GPT-4 (OpenAI, 2023)
- We input 30 randomly selected annotated candidates, comprising two paragraphs, their subjects, similar relations, and a label indicating how many workers labeled it as an analogy (0-3).
- Following the in-context learning phase, we run the model on our unlabeled analogy candidates.

4) Human Validation

- **Goal**: to demonstrate how our pipeline can be used for creating datasets.
- Silver-set: automatically labeled.
- **Gold-set**: validated by humans.
- We show annotators both the most likely analogous candidates (as predicted by the model), but also the least likely candidates.
 - Allows us to evaluate the filtering model where it is most certain.
 - Balances the data for the annotators.
- We have 3 annotators per sample. **Strict setting**: positive if all 3 agree it is analogy.
- We randomly gave annotators small batches to label until reaching 310 positives.
- Annotators' agreement is 78.6%, where random chance is 25%.

4) Human Validation – Filtering model evaluation

- We compare the filtering models' predictions to workers' majority vote.
- Our model achieves an accuracy of 85.1%, f1-score of 83.4%.
- Importantly, it reaches 79.5% precision, predicting high likelihood of an analogy (>> 30% base rate).



5) Distractors Generation (challenging negatives)

Base:	Target (Analogy):	Target (Distractor):
How do bats use echolocation?	How do submarines use sonar?	How do submarines use sonar?
(Natural Sciences)	(Engineering)	(Engineering)
Bats use echolocation to navigate and	Submarines use sonar technology to	Submarines interpret the echo to
find food. They emit high frequency	detect objects in the water.	determine the distance and size of
sound waves that bounce off of objects	They emit sound waves, which	the object. After interpreting the
in their environment.	travel through the water and bounce	echo, they emit sound waves, which
The bats then receive the echoes and in-	off the objects.	travel through the water and bounce
terpret the information to locate their	The sound waves are then received	off the objects. These sound waves
prey and navigate their surroundings.	back as an echo. Submarines in-	are then received back as an echo.
Submarines interpret the echo to deter-	terpret the echo to determine the	Finally, submarines use sonar tech-
mine the distance and size of the object.	distance and size of the object.	nology to detect objects in the water.

5) Distractors Generation (challenging negatives)

- Generation. We use GPT-4 (OpenAI, 2023) to generate distractors with two separate prompts:
 - \circ (1) finding and replacing two dependent events (one-shot).
 - Output a list of the events in T according to their order in time, and then replace two dependent events, along with an explanation.
 - \circ (2) writing a coherent T' (few-shot).
 - Given an order of events, write a coherent paragraph.
- **Evaluation.** a correct distractor should switch two dependent events, with a paragraph that is coherent and consistent with the new order.
 - GPT4 generates correct distractors around 90% of the time.
 - \circ We deduce the distractor generation is effective, and create for both gold and silver sets.

Dataset Analysis

- Gold set: 310 analogies. Silver set: 403 analogies, each paired with one simple and one challenging distractor. This dataset is:
 - Currently the largest of its kind.
 - Can be easily expanded with more API calls to LLMs.

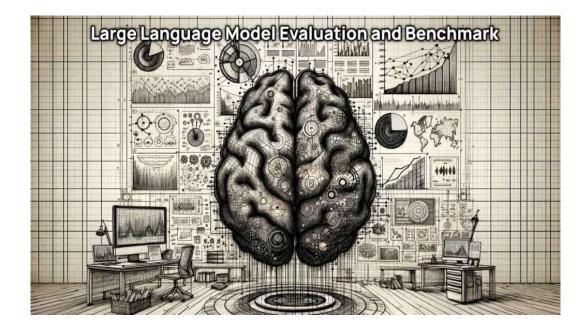
• Gold set analysis:

- \circ 40% far analogies, 60% close analogies.
- Most dominant issue raised with the candidates is the "dissimlar relations".

• Additional data released:

- Keep samples with annotators' disagreements (does not make it into our gold or silver sets).
- Keep samples with issues identified by annotators.

PART II – Evaluating Humans and LLMs



Evaluating Humans and LLMs

- ProPara-Logy benchmark of analogy recognition.
- Tasks: binary classification & multiple choice.
- **Evaluation:** state-of-the-art **LLMs** and **Humans**.
 - zero-shot and guided (using labeled data) settings.

Research Questions:

- **RQ1:** What is the performance of humans and models?
- **RQ2:** *Is the automatically-generated "silver set" (without human validation), useful for training models?*
- **RQ3:** Can the distractors fool humans and models?

Tasks

- **Binary classification:** Given a pair of paragraphs B and T, each describing a scientific process in natural language, the task is to decide whether the processes are analogous. The target paragraph could be:
 - Analogy (positives)
 - **Random** (simple negative)
 - **Distractor** (challenging negative)

- **Multiple choice:** Given a base paragraph B, along with four candidate paragraphs, the task is to identify the paragraph that is most analogous to B. **Setups:**
 - **Basic:** includes one analogous paragraph and **3 random paragraphs**.
 - Advanced: includes challenging distractors.

Results - Binary Classification Task

Row	Settings	Method	Overall	Per Target Type		
				Positives (50%)	Negatives (50%)	
				Analogy	Random	Distractor
1		Random Guess	50	50	50	50
2		GPT4	79.5	95.2	92.9	34.8
3		ChatGPT	68.2	53.5	96.8	69.0
4	Zero-shot	Gemini Pro	73.9	79.7	100	36.1
5		FlanT5-XXL	61.1	28.1	100	88.4
6		FlanT5-XL	59.7	25.1	100	88.4
7		FlanT5-small	49.3	0	97.4	100
8		Humans	79	58	100	100
9		GPT4 (in-context)	78	86.5	98.1	40.7
10	Guided	FlanT5-small (fine-tune)	74.4	87.1	96.1	27.1
11		Humans	92.5	95	100	80

- GPT4 achieves the best overall accuracy.
- Humans achieve better performance than models (~13% gap in Overall Accuracy).
- The training of FlanT5-small on the silver-set improved its Overall Accuracy.
- Distractors reduce the performance of both humans and LLMs.

Results - Multiple Choice Task

				(distractors)
Row	Settings	Method	Basic	Advanced
1		Random Guess	25	25
2		GPT4	95.5	83.2
3		ChatGPT	74.2	59
4	Zara shat	Gemini Pro	87.4	62.6
5	Zero-shot	FlanT5-XXL	87.4	75.2
6		FlanT5-XL	68.4	55.5
7		FlanT5-small	32.9	32.9
8	Guided	Humans	100	96

- Humans achieve better performance than models (~13% gap in Advanced setup).
- Out of the models, GPT4 achieves the best results.
- Distractors reduce performance in both humans and models.

Conclusions

- Analogy-making in human cognition and AI.
- **ParallelPARC** pipeline for generating more complex and realistic analogies in scale.
- **ProPara-Logy** dataset of analogies between scientific processes.
- Humans outperforms models (which are also more sensitive to distractors).
- The automatically-generated data is useful for training and improving models.
- Domains where analogies have shown promise.
- NLP work on analogies novel tasks and benchmarks.
- Code repository: <u>https://github.com/orensul/ParallelPARC</u>
- Looking forward to seeing you in Mexico City!