
Visual Editing with LLM-based Tool Chaining

Oren Sultan – AI / NLP Researcher
Computer Science PhD Researcher @Hebrew University
AI Researcher @Lightricks

��

https://www.linkedin.com/in/oren-sultan-93039146/

30M
Monthly active

creators

100M
Monthly
exports

About Lightricks
We are the go-to
innovative photo and video
creation platform, enabling
creators and brands to
produce engaging,
top-performing content.

Lightricks removes barriers to
creation by building cutting
edge tools based on the most
advanced technology.

“Visual Editing with LLM-based Tool Chaining:
An Efficient Distillation Approach for Real-Time Applications”

Oren Sultan Prof. Dafna ShahafAlex Khasin Guy Shiran Dr. Asi Messica

��

Background and Motivation

Visual Editing with LLM-based Tool Chaining

● Idea. to teach LLMs to use existing, specialized tools in VideoLeap

● Goal. to implement an AI assistant in VideoLeap, democratizing advanced capabilities.

● As a proof-of-concept, we focused on tonal color adjustments, allowing users to change a
video’s appearance via textual instructions.

Our Task: Visual Editing – Color Grading

Task.
Altering the appearance of an image or a video by adjusting its tonal
colors, satisfying the user’s request.
● Input: an asset (image/video) and a free text description of the

requested appearance.
● Output: the altered image or video, based on the request.

Challenges.
● Interpreting user stylistic requests, specified in natural language (e.g.,

“The matrix”, “Morocco”).
● Choosing the appropriate tools and their parameters to achieve the

desired visual effect.

https://docs.google.com/file/d/1QwsH-cIad7tBbMcfK3yJLSoKNnefYwEz/preview

Example: “Golden hour”

{
 "exposure": 0,
 "contrast": 10,
 "brightness": 10,
 "highlights": 20,
 "shadows": -10,
 "saturation": 15,
 "vibrance": 15,
 "temperature": 30,
 "tint": 10,
 "hue": 0,
 "bloom": 0,
 "sharpen": 0,
 "structure": 0,
 "linearOffset": 0
}

Adjust

{
 "red": {"saturation": 20, "luminance": 10},
 "orange": {"saturation": 30, "luminance": 20},
 "yellow": {"saturation": 40, "luminance": 30},
 "green": {"saturation": -20, "luminance": 0},
 "cyan": {"saturation": -20, "luminance": 0},
 "blue": {"saturation": 0, "luminance": 0}
}

Selective adjust

{
 "name": "faded_HighNoon",
 "intensity": 40
}

Filter

Source “Golden hour” filter look

https://docs.google.com/file/d/19RobUxKem9IKmnWrLGZgma8z6SwIRR1-/preview

GPT4 (0-shot) User’s request

Videoleap

1) Adjust prompt Selective adjust prompt Filter prompt

Videoleap

Prompt Engineering
GPT4 (1-shot).
● Shorter prompts and shorter responses → #tokens reduction → cost and latency reduction.
● ~50% reduction in #tokens and response time for every prompt.
● 100% validity of output json format.

GPT-3.5-turbo (0-shot).
● Does not produce response with a correct json format.
● After changes in the prompt, it produces a correct json format, but with wrong parameters.

GPT-3.5-turbo (1-shot).
● Produce a correct json format, with correct parameters.

GPT-3.5-turbo (1-shot) vs. GPT4 (0-shot).
● ~20x times cheaper.
● ~2x times faster than GPT4.
● Shows reasonable performance.

A 1-shot, Chain-of-Thought (CoT) prompt for the Adjust tool
You are a professional image and video editor. Your goal is to make the color adjust filters based on the user’s request. The standard tools you
can use are: global color grading tool which works globally on all colors, selective color grading (separate adjust for different color ranges) and
LUT filter presets. Suggest how to use these tools to achieve the requested look. The tools should be combined and work well when
applied together. Write in TOOL whether you should use the color grading tool. If yes, suggest how.
PARAMETERS:
"exposure", "contrast", "brightness", "highlights", "shadows", "saturation", "vibrance", "temperature", "tint", "linearOffset" (values between -100
and 100), "hue" (values between 0 and 360), and "bloom", "sharpen", "structure" (values between 0 and 100). Is the request asked to apply the
look on a specific color range? If so then don’t change the "hue" parameter of the global color grading. If all parameters are zero, then don’t use
this tool. If you decide to use the global color grading tool, write in JSON only parameters from PARAMETERS with their correct
values. Otherwise, write an empty json.
Inputs: USER_REQUEST
Outputs: TOOL, JSON

Inputs:
USER_REQUEST: a golden hour filter look
Outputs:
TOOL: Yes, the global color grading tool should be used. The temperature should be increased to add a warm, golden tone to the image.
The highlights and shadows should be adjusted to soften the image and mimic the diffused light of the golden hour. The saturation could also be
increased to enhance the colors. The hue parameter should not be changed as the request does not specify a specific color range.
JSON: { "exposure": 0, "contrast": 0, "brightness": 0, "highlights": 20, "shadows": -20, "saturation": 10, "vibrance": 0, "temperature": 30,
"tint": 0, "hue": 0, "bloom": 0, "sharpen": 0, "structure": 0, "linearOffset": 0}

A 1-shot, Chain-of-Thought (CoT) prompt for Selective Adjust tool
You are a professional image and video editor. Your goal is to make the color adjust filters based on the user’s request. The standard tools you
can use are: global color grading tool which works globally on all colors, selective color grading (separate adjust for different color ranges) and
LUT filter presets. Suggest how to use these tools to achieve the requested look. The tools should be combined and work well when
applied together. The parameters are: "red", "orange", "yellow", "green", "cyan", "blue". For each we have "saturation" and "luminance" (both
between -100 and 100). Write in TOOL whether you should use the selective color grading tool. If yes, suggest how.
Write in JSON the parameters for selective color grading if you decide to use the selective color grading tool. You should write the colors
("red", "orange", "yellow", "green", "cyan", "blue"), and a value for each one of the "saturation", "luminance" parameters.
If you decide to use the global color grading tool or LUT filter presets instead, write an empty json.
Inputs: USER_REQUEST
Outputs: TOOL, JSON

Inputs:
USER_REQUEST: a golden hour filter look
Outputs:
TOOL: Yes, the selective color grading tool should be used. We would enhance the reds, oranges, and yellows to create the warm golden hour
look. We would also slightly reduce the saturation and luminance of the blues and greens to make the warm colors stand out more.
JSON: {"red": {"saturation": 20, "luminance": 10},

 "orange": {"saturation": 30, "luminance": 20},
 "yellow": {"saturation": 40, "luminance": 30},
 "green": {"saturation": -20, "luminance": -10},
 "cyan": {"saturation": -20, "luminance": -10},
 "blue": {"saturation": -30, "luminance": -20}}

A 1-shot, Chain-of-Thought (CoT) prompt for the Filter tool
You are a professional image and video editor. Your goal is to make the color adjust filters based on the user’s request. The standard tools you
can use are: global color grading tool which works glob- ally on all colors, selective color grading (separate adjust for different color ranges) and
LUT filter presets. Available LUT presets are: "none", "lovely_day", "action", "vivid", "north", "purple_rain", "winter", "faded_Retro",
"faded_HighNoon", "faded_Mist", "faded_Terra", "faded_Vista", "faded_C1", "faded_AL2", "teal_and_orange_1", "teal_and_orange_1"
"teal_and_orange_2", "teal_and_orange_3", "teal_and_orange_4", "teal_and_orange_5", "teal_and_orange_6", "fortune", "duotone_red",
"spring", "duotone_pink", "enchanted", "duotone_green", "ultra", "duotone_yellow", "firecracker", "duo- tone_orange", "cyberpunk",
"darkness", "night_vision", "negative". Suggest how to use these tools to achieve the requested look. The tools should be combined and
work well when applied together. Write in TOOL whether the LUT preset is suitable for the requested look. The default preset is
"none". Only use other than "none" LUTs if you find a very close or exact preset. Otherwise use "none" preset. If duotone was not
explicitly mentioned in the request, but you still choose to use a duotone filter, then use very low intensity of 15. Suggest a specific preset from
the list. Try to find a preset name that is semantically close to the requested look. The closer the preset, the more intense it should be. If the
semantic match is quite close, but not exact use intensity of around 40 to 60. For example for "cool morning" you can choose the presets named
"north" or "winter" because both associated with cold, but the intensity should be low, about 40 to 60 because cool is not exactly north or winter.
But if the request contains the word "winter" then you should choose the winter LUT with high intensity of around 80. Write in JSON the correct
LUT filter preset from the available LUT presets, and the correct intensity between 0 and 100.
Inputs: USER_REQUEST
Outputs: TOOL, JSON

Inputs:
USER_REQUEST: a welding mask filter look
Outputs:
TOOL: The "night_vision" LUT preset seems the most appropriate since night vision also tends to produce greenish images.
JSON: {"name": "night_vision", "intensity": 60}

(1) User’s prompt: X ray Model A Model B

Blind Experiment – which model produces a better result?

(2) User’s prompt: Dark Atmosphere

Model A Model B

(3) User’s prompt: 😈
Model A Model B

(4) User’s prompt: Neon

Model A Model B

(5) User’s prompt: Shadow Depth

Model A Model B

(6) User’s prompt: Cold Tone

Model A Model B

(7) User’s prompt: Charlie Chaplin
Model A Model B

(8) User’s prompt: welding mask

Model A Model B

Results

A/B Test Results

Can we do better?

A Distillation framework – fine-tune a (smaller) student LLM
with guidance from a (larger) teacher LLM and users behavioral signals

● Dependency on GPT-3.5-Turbo, a closed model with usage costs
● Larger LMs like GPT-3.5-Turbo have high latency
● Lack of integration of user preferences

● Open-source models are free
● Smaller LMs have a better latency
● Fine-tuning on high-quality data to better align our user preferences

Current drawbacks

Our proposed solution

Our proposed solution advantages

Our distillation framework approach

Our distillation framework approach

1) Data Collection
Gathering Teacher LLM Outputs.
● Teacher LLM: GPT-3.5-Turbo (serving users for four months – data collection period).

● A data row includes:
○ The user’s intent with the requested vibe (e.g., “x-ray”).
○ The output of the teacher LLM to this intent, including the tools to use and their parameters.
○ Whether the user exports the result per tool (highly satisfied users export results).

● Data Filtering:
○ Samples with zero exports.
○ Our teacher LLM can generate different outputs per intent (across different calls); We

take as ground truth the result that maximizes the export rate.

● Prompts: one-shot example for user intent, with rational (CoT) and output parameters per tool.

● In total, we collected 9,252 unique user intents, each with corresponding teacher outputs for the 3
tonal adjustment tools, resulting in 27,756 rows.

1) Data Collection

Data Processing for Fine-Tuning.
● We used the collected data to fine-tune a student LLM, using three more concise prompts.
● We decided not to request rational from the student, as we prioritize low latency.
● The student LLM is trained on all three tools (similar to multi-task instruction)

1) Data Collection

Data Splitting.
We randomly split the data for fine-tuning.
● Test set: 1K unique user intents, each with a teacher LLM output for each tool (3K samples).
● Training set: the remaining data (8,252 rows).
● Each row includes a user intent and three tool outputs.

2) Supervised Fine-tuning (SFT)

Student LLMs.
● Auto-regressive model (decoder only): Llama-2-7b-chat-hf (7B)

○ Maximize the log probability of the target word given prior words and models parameters.

● Sequence-to-Sequence model (encoder decoder): FlanT5-base (250M)
○ Maximize the log probability of the target word given previous target words and the

input sequence, using the models parameters.

Filtered dataset.

3) Offline Evaluation Metrics

● Tool-selection: the model’s ability to decide correctly whether to use a tool.
We measure precision and recall, and report tool-selection score as the F1-score.

● Quality: the model’s ability to use a tool correctly.
○ For the filter tool: the accuracy on the filter name.
○ For the adjust and selective adjust tools: the mean cosine similarity across samples

between predicted and ground-truth parameter values.

● Final score: the harmonic mean between tool-selection score and quality score, emphasizing
high performance in both.

● Overall score: the average of the final scores of all tools.

3) Offline Evaluation – Reality check

● We analyze the actual generated images/videos by applying the tools’ predicted parameters in our app.

● In this study, we analyze a random sample, with three human annotators per sample (RQ1).

● Ideas for automatic evaluation of the generated images/videos:
○ Aesthetic Score (Schuhmann et al., 2022, CVPR 2022): predicts people’s ratings of images.

○ PickScore (Kirstain et al., 2023, NeurIPS 2023): evaluates relevancy based on a preference
model trained on text-to-image prompts and user preferences.

○ VQA Score (Zhiqiu Lin, ECCV 2024): Evaluates the alignment between images and text
prompts using visual question answering (VQA) models.

○ Proprietary models (e.g., GPT-4V):

4) Data Augmentation

● We iteratively run the offline evaluation on the training set.

● (1) Identifying where the student LLM predictions differ from the teacher’s (a mistake)
○ For the filter tool, a mistake occurs when the predicted filter name is incorrect.
○ For the adjust and selective adjust, a mistake occurs when a sample’s cosine similarity is

lower than the tool’s mean cosine similarity without data augmentation.

● (2) Using another LLM to generate similar input user intents where the student LLM made
mistakes (e.g., “cool tone” from “cool morning”)
○ These new intents, along with the teacher LLM original answers, are added to the training set.
○ We augmented an intent whenever a mistake was identified by at least one tool.

5) Online Evaluation

● When our offline evaluation shows it is worthwhile to consider a new student LLM, we confirm
it in an online A/B test experiment.

● Metric of interest: project_completion_rate = #projects_exported / #projects_started.

● This metric indicates the total user satisfaction with the results and the overall experience.

Experiments

Models.
● Teacher LLM: GPT-3.5-Turbo
● Student LLMs:

○ Llama-2-7b-chat-hf with Low Rank Adaptations (LoRA) + Quantization, A100 GPU.
○ FlanT5-base (250M) (faster), L4 GPU (5 times cheaper).

● Fine-tune for 10 epochs, selecting the best checkpoint from last 3 epochs,
based on the highest final average tool score.

Research Questions.
● RQ1: How well do student LLMs perform, and do they effectively mimic the teacher LLM?
● RQ2: Is augmentation effective in low-data regimes?

Experiments

RQ1: Student LLMs Performance – Offline Evaluation

● Metrics: (tool-selection score, quality score, final score). Overall: avg. of final scores across the tools.
● FlanT5-base performs very similarly to Llama-2-7b-chat-hf (rows 1, 4).

● (r5 > r3 > All), where r_i denotes user intents with at least i calls.
Interestingly, both models perform better on a test subset with more popular user intents

● The average latency for all tools:
GPT 4: 9-10s, GPT 3.5: 3-4s.
LLaMA2-7b-chat: 1.63s (A100 GPU), FlanT5-base: 1.38s (L4 GPU).

RQ1: Student LLMs Performance – Offline Evaluation

● Three calibrated team annotators reviewed each sample according to two criteria:
○ Is the image relevant to the intent?
○ Does the student model correctly mimic the teacher?

● Relevancy: 87%-93% for all models.
● Student LLM correctly mimic the teacher: 73% for both (not the same).

RQ1: Student LLMs Performance – Online Evaluation (A/B Test)

Experiment 1.
● Teacher LLM: GPT-3.5-Turbo (94,317 projects) vs. Student LLM: Llama-2-7b-chat (93,495 projects)
● Results: the completion rate for the teacher was 96.1% of that of Llama-2-7b-chat
● Conclusion: Comparable performance, we chose Llama-2-7b-chat for its lower latency and cost

Experiment 2.
● Student LLM: FlanT5-base (20,294 projects) vs. Student LLM: Llama-2-7b-chat (20,282 projects)
● Results: the completion rate of FlanT5-base was 99% of that of Llama-2-7b-chat
● Conclusion: Comparable performance, we chose FlanT5-base for its lower latency and cost

● Our offline metrics align with the results of the online A/B tests.

Metric. project completion rate (as an indicator for user satisfaction)

RQ2: Augmentation in low-data regimes

Train % Augmentations Train Size Overall Score

100 0 8,252 0.72

12.5% 0 1,031 0.52

12.5% 806 (43.8%) 1,837 0.65

● We evaluated the augmentation on different sizes of our training set, using random sampling.
● Mistakes were evaluated on a random sample of 1,000 instances.
● We augmented an intent whenever a mistake was identified by at least one tool.
● Using GPT-4, we generated similar user intents.

● Our results show a 25% performance improvement (+0.13), in low data regimes
(1/8 of the training) with just one iteration!

Conclusions

Which LLM to Use?

Custom LLM
(Fine-tuned LLaMA 2 / FlanT5)

● Additional latency reduction
● Cost reduction
● Learning from users’ exports data

GPT 4

● Zero Shot

● Long complex prompt and
response

● Expensive
● High latency

GPT 3.5

● One Shot

● Shorter prompt and
shorter response

● 50% latency
● 20x cost reduction

Key takeaways

★ Combine LLMs and classic algorithms / tools for best of both worlds.

★ Always start with prompt engineering.

★ Fine-tuned small language models can deliver more efficiently.

★ Leverage your users data.

★ Offline evaluation metrics let you iterate quickly and cheaply.

Future Work

● To test potential fine-tuning improvements by adding rational as an additional label
for supplementary supervision in a multi-task framework (Hsieh et al., 2023).

● To quantify the benefits of integrating user signals, and to explore other methods for
combining user feedback (e.g, personalization).

● To extend our one-hop responses to conversational agents / dialogue systems.

Questions?

Thank You!

