

Breakpoint Transformers for Modeling and Tracking Intermediate Beliefs

Kyle Richardson^{2®}, Ronen Tamaril^{1®}, Oren Sultan¹, Reut Tsarfaty³, Dafna Shahaf¹ and Ashish Sabharwal²

¹Hebrew University of Jerusalem, Israel, ²Allen Institute of Artificial Intelligence, Seattle, USA, ³Bar-Ilan University, Israel * Work begun during internship at AI2 Sequal contribution

Tracking intermediate Beliefs: Motivation

- Wish your language model (LM) had breakpoints you could inspect to probe its intermediate semantic representations?
- · Breakpoints in programming are vital for code interpretability: allow inspection of program state at intermediate points throughout execution
- We develop a new idea of "natural language breakpoints" that can be used to probe LM encodings of input texts

Breakpoint Transformers (BPTs): Modeling Approach

- · Breakpoints are simply a special token [B] inserted after each sentence
- · Breakpoint encoding can then be queried against natural language proposition p to obtain {T,F,?} prediction
- · Represent summary of model "beliefs" at that point in text

T F T U -TTTT

Optimization

Semantic logic loss translates to cross-entropy

 BPT compared against standard late-interaction baseline (Sentence) Transformers*) - BPT single read enables efficient scaling

*Reimers & Gureyvich (2019)

Datasets: Annotating Intermediate State

Task	Example Stories	Breakpoint Propositions
Relational Reasoning (CLUTRR)	John is the brother of Sasan [R] ₁ Sasan's mother is Janice [R] ₂ ,	P _k : ["Susan in the sister of John" trum, "Susan is the sister-in-law of Janior Indee, Tanior in the mother of John" on.] P _k : ["Janior in the mother of John" trum, "John is the father of Janior Indee,]
Story Understanding (hAbl)	John moved to the kitchen [B] ₂ He picked up an apple [B] ₂ John then gave the apple to Mary [B] ₂	P ₁ : ["John has the apple" falses, "John is in the kitchen" trues] P ₂ : ["John has the apple" trues, "John is in the kitchen"
Commonweise (TRIP)	Forn dropped his radio _carpet. [80]: The radio broke _ [80]: Tons turned on the radio _ [80]: _	Pg : ['radio is in pieces' truse, 'radio is powered' fallse] Pg : ['radio was powered' truse]

bAbl, CLUTRR: synthetic | TRIP (Storks et. al, 2021): human-authored

Experimental Results

CLUTRR

 BPTs show improved prediction acc., consistency and training efficiency

		Propositi	on Product	N/B	
	Model		Dev / Test	Set + (stif) (Acc %)	
		y Baseline M (Multi-pass)		/ 41.60 / 58.59 (p.n. 24)	
		e (Multi-ross)	81.41	/81.94 (±0.17) /8534 (±0.17)	
M	Ques	tion-answering, de	v / best + :	promitestion	
PE	T5-base Bart-base T-base	99.00 / 99.78 :- 98.65 / 98.94 :- 99.24 / 99.75 :-	0.76)	84.19/75.13 (n.0.34) 83.21/70.42 (n.1.33) 63.61/74.84 (n.0.34)	

· BPTs can accurately predict hundreds of relations across long stories jointly (compared to multi-pass baseline)

Model	6.Ac	hard QA	
	Prop. %	QA%	QAS
Majority	65.87	-	-
FT-T5-base (QA)	-	97.29 (10.1	00.09
FT-Bat-base		97,67	0.67.21
BILSTM (Multi)	80.2 (-	
TS-base (Multi)	99.2 (40.21)		-
BPT-base	98.5 1 1 1 1 1 1 1		-
BPT-base + Q1.	98.5	94.9	76,61

- BPT show up to 20-30% improvement against RoBERTA-based (RoB) approach of Storks et. al (2021)
- · BPT needed no additional arch. adaptation, RoB tailored arch specifically for TRIP

Split	Model	Task I(Plans.)	Task 2(Consist.)	Task 3 (Verif.)
Dev	RoB	73.6	22.4	10.6
	BPT-base	81.99(±0.91)	58.07(±0.76)	36.44(±0.53)
Test	RoB	72.9	19.	9.7
	BPT-base	80.55(±1.20)	53.83(±1.65)	32.37(±0.27)

*example figure from Storks et. al (2021)

Discussion

- BPTs are modular extension of Transformers: added to existing models without harming performance
- · BPTs improve model interpretability, easily applicable to narrative/procedural text understanding tasks
- Limitations & future work:
 - Systematic generalization: BPTs inherit limitations of pre-trained LMs
 - o Causal relation between breakpoints and generated outputs is unclear, can possibly be enhanced by new joint consistency losses